Joint Infrared Target Recognition and Segmentation Using a Shape Manifold-Aware Level Set

نویسندگان

  • Liangjiang Yu
  • Guoliang Fan
  • Jiulu Gong
  • Joseph P. Havlicek
چکیده

We propose new techniques for joint recognition, segmentation and pose estimation of infrared (IR) targets. The problem is formulated in a probabilistic level set framework where a shape constrained generative model is used to provide a multi-class and multi-view shape prior and where the shape model involves a couplet of view and identity manifolds (CVIM). A level set energy function is then iteratively optimized under the shape constraints provided by the CVIM. Since both the view and identity variables are expressed explicitly in the objective function, this approach naturally accomplishes recognition, segmentation and pose estimation as joint products of the optimization process. For realistic target chips, we solve the resulting multi-modal optimization problem by adopting a particle swarm optimization (PSO) algorithm and then improve the computational efficiency by implementing a gradient-boosted PSO (GB-PSO). Evaluation was performed using the Military Sensing Information Analysis Center (SENSIAC) ATR database, and experimental results show that both of the PSO algorithms reduce the cost of shape matching during CVIM-based shape inference. Particularly, GB-PSO outperforms other recent ATR algorithms, which require intensive shape matching, either explicitly (with pre-segmentation) or implicitly (without pre-segmentation).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Target Tracking, Recognition and Segmentation for Infrared Imagery Using a Shape Manifold-Based Level Set

We propose a new integrated target tracking, recognition and segmentation algorithm, called ATR-Seg, for infrared imagery. ATR-Seg is formulated in a probabilistic shape-aware level set framework that incorporates a joint view-identity manifold (JVIM) for target shape modeling. As a shape generative model, JVIM features a unified manifold structure in the latent space that is embedded with one ...

متن کامل

Joint view-identity manifold for infrared target tracking and recognition

We propose a new joint view-identity manifold (JVIM) for multi-view and multitarget shape modeling that is well-suited for automated target tracking and recognition (ATR) in infrared imagery. As a shape generative model, JVIM features a novel manifold structure that imposes a conditional dependency between the two shape-related factors, view and identity, in a unified latent space, which is emb...

متن کامل

VIV: Using visible internal volume to compute junction-aware shape descriptor of 3D articulated models

An articulated shape is composed of a set of rigid parts connected by some flexible junctions. The junction has been demonstrated to be a critical local feature in many visual tasks such as feature recognition, segmentation, matching, motion tracking and functional prediction. However, efficient description and detection of junctions still remain a research challenge due to high complexity of a...

متن کامل

New Strategies for Data Analysis and Optimization on Riemannian Manifolds

How can video clips be analyzed to describe organic human actions automatically? How can the long-wave infrared spectrum of an underwater object be identified when the water is distorting the signature of the target? If you had the reflection of an image from a fun-house mirror, could you recognize the original image? My research focuses on geometric analysis of high dimensional data, and inclu...

متن کامل

Detection of Single Standing Dead Trees from Aerial Color Infrared Imagery by Segmentation with Shape and Intensity Priors

Standing dead trees, known as snags, are an essential factor in maintaining biodiversity in forest ecosystems. Combined with their role as carbon sinks, this makes for a compelling reason to study their spatial distribution. This paper presents an integrated method to detect and delineate individual dead tree crowns from color infrared aerial imagery. Our approach consists of two steps which in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015